26 research outputs found

    Phenothiourea Sensitizes Zebrafish Cranial Neural Crest and Extraocular Muscle Development to Changes in Retinoic Acid and IGF Signaling

    Get PDF
    1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses

    Potential Roles of Arnt2 in Zebrafish Larval Development

    No full text
    The aryl hydrocarbon receptor nuclear translocator (ARNT) is a basic helix-loop-helix–PAS heterodimeric transcription factor that dimerizes with other basic helix-loop-helix–PAS proteins to mediate biological responses. The function of ARNT2 is poorly understood. Here we provide an initial characterization of the zebrafish arnt2 null (arnt2−/−) mutant to identify functions of Arnt2 during development. Arnt2−/− mutant zebrafish develop normally until 120 hours postfertilization (hpf) when morphological changes and functional deficits occur. The C-start escape response initiated by either touch or startle stimuli is absent in the mutants. Brain ventricle size is markedly increased at 120 hpf. Heart ventricles are enlarged, with decreased ventricle wall thickness. A cardiac arrhythmia, characterized by missing beats, is also observed in the mutants. This is associated with bradycardia in arnt2−/− larvae. Dilated liver sinusoids merge abnormally to form an extensive, labyrinth-like network of vascular channels. External appearance of arnt2−/− larvae at 120 hpf is indistinguishable from wild type except that the swim bladder is not inflated. The arnt2−/− mutants are not debilitated when phenotypic effects are first detected at 120 hpf that culminate in mortality, 4 days later around 216 hpf. Gross morphological assessment of the development of forebrain, midbrain, and hindbrain regions, neuromasts and Mauthner neurons, inner ear semicircular canals and otoliths, primary motor neurons, trigeminal ganglia, and trunk skeletal muscles, before or when the arnt2−/− phenotype was observed, failed to demonstrate a difference from wild type. The only effect in arnt2−/− larvae that occurred before 120 hpf was a decrease in expression of sim1, an Arnt2 dimerization partner, in the hypothalamus and ventral thalamus at 72 hpf. Further research is needed to determine if the primary functions of Arnt2 occur during the larval stage, when the phenotype is observed, or earlier in development
    corecore